
Detection of Near-Duplicated Image Regions

Babak Mahdian1 and Stanislav Saic2

1 Czech Technical University in Prague, Faculty of Nuclear Sciences and Physical
Engineering, Břehová 7, 115 19 Prague 1, Czech Republic
mahdian@utia.cas.cz

2 Academy of Sciences of the Czech Republic, Institute of Information Theory and
Automation, Pod Vodárenskou věž́ı 4, 18208 Prague 8, Czech Republic
ssaic@utia.cas.cz

Summary. Modern, easy to use image processing software enables forgeries that are
undetectable by the naked eye. In this work we propose a method to automatically
detect and localize near-duplicated regions in digital images. The presence of near-
duplicated regions in an image may signify a common type of forgery called copy—
move forgery. The method is based on blur moment invariants, which allows successful
detection of copy—move forgery, even when blur degradation, additional noise, or ar-
bitrary contrast changes are present in the duplicated regions. These modifications are
commonly used techniques to conceal traces of copy—move forgery. Our method works
equally well for lossy format such as JPEG.

1 Introduction

In this work we focus on detecting a common type of digital image forgery,
called copy—move forgery. In copy—move forgery, a part of the image is copied
and pasted into another part of the same image, with the intention to hide an
object or a region of the image. Figure 1 shows an example. We can determine
whether an image contains this type of forgery by detection of duplicated regions.
Duplicated regions may not always match exactly. For example, this could be
caused by a lossy compression algorithm, such as JPEG, or by possible use of
the retouch tool.

Existing copy–move forgery detection methods are mostly based on match-
ing of overlapping image blocks. For example, Fridrich et al. [4] has proposed
a method which is based on matching the quantizied lexicographically sorted
discrete cosine transform (DCT) coefficients of overlapping image blocks. The
lexicographically sorting of DCT coefficients is carried out mainly to reduce the
computational complexity of the matching step. Another method has been pro-
posed by Popescu and Farid [5] and is similar to [4]. This method differs from
[4] mainly in the representation of overlapping image blocks. Here, the principal
component transform (PCT) has been employed in place of DCT. The represen-
tation of blocks by this method has better discriminating features.

As pointed out in [4], ideal regions for using copy—move forgery are textured
areas with irregular patterns, such as grass. Because the copied areas will likely
blend with the background it will be very difficult for the human eye to detect

M. Kurzynski et al. (Eds.): Computer Recognition Systems 2, ASC 45, pp. 187–195, 2007.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2007



188 B. Mahdian and S. Saic

Fig. 1. An example of a copy—move forgery. The original (left) and forged version
(right).



Detection of Near-Duplicated Image Regions 189

any suspicious artifacts. Another fact which complicates the detection of this
type of tampering is that the copied regions come from the same image. They
therefore have similar properties, such as the noise component or color palette.
It makes the use of statistical measures to find irregularities in different parts of
the image impossible.

2 Detection of Near-Duplicated Regions

To detect the copy—move forgery we focus our aim on detection of near-
duplicated regions in the image. Existing copy—move forgery detection methods
have limited abilities. In most cases of forgery investigated, they were able to
detect duplicated regions in the tampered image despite of the presence of an
acceptable amount of noise. This is mainly caused due to a quantization step
or a similarity threshold. Additionally, it allows for analysis images compressed
with a lossy algorithm, such as JPEG. However, a skilled falsifier will be able to
produce a work undetectable by these methods.

This can be, for instance, achieved easily by blurring. An experienced falsifier
can use a simple 2D convolution of the duplicated region with a blur filter mask
to make detection of forgery even more difficult. Thus, to improve the detection
abilities of the current available approaches, we can describe analyzed regions by
some features invariant to the presence of unknown blur. From a mathematical
point of view, we are looking for a functional B, which is invariant with respect
to blur degradation. In other words, B satisfies the condition B(f) = B(D(f)),
where operator D denotes the blur degradation. Furthermore, due to the fact
that the falsifier can also use additive noise to make detection more difficult,
these invariants should also work well with the presence of additive noise.

The aforementioned requirements are satisfied by blur moment invariants.
They have been previously addressed by Flusser and Suk [1, 2] and have found
successful applications in many areas of image processing such as: in face recog-
nition on out-of-focused photographs, template-to-scene matching of satellite
images, in focus/defocus quantitative measurement, etc. An advantage of mo-
ment invariants is that they are computed by a summation over the whole image,
so they are not significantly affected by additive zero-mean noise.

We will define the problem of copy—move forgery detection in the following
way. Given an image I(x, y) containing an arbitrary number of near-duplicated
regions of unknown location and shape, our task is to determine the presence
of such regions in the image and to localize them. The aim of this investigation
is create a method that can detect duplicated regions, even when some contain
degradations caused by convolution with a shift-invariant symmetric energy-
preserving point spread function (PSF) and additive random noise. Formally:
let f(x, y) be a function describing the original region and g(x, y) the acquired
region created by the falsifier via convolution of f(x, y) with the PSF, then
g(x, y) = (f ∗ h)(x, y) + n(x, y), where h(x, y) is a shift invariant PSF, n(x, y)
an additive random noise and ∗ denotes a 2D convolution.We would like to
find all g(x, y) created from f(x, y) and h(x, y) via the above equation. Due



190 B. Mahdian and S. Saic

to the fact that moment invariants are utilized as features, we will assume the
following restrictions. Both f(x, y) ∈ L1 and g(x, y) ∈ L1 are real functions and
have a bounded support and nonzero integral. Moreover, the PSF is assumed
to be axial symmetric and energy-preserving, i.e.: h(x, y) = h(−x, y) = h(y, x)
and

∫∞
−∞
∫∞
−∞ h(x, y)dxdy = 1. These assumptions do not cause a significant

limitation. Most imaging systems that we are interested in perform some type
of symmetry. By supposing other types of symmetries, like central, four-fold
or circular symmetry, we can also construct blur invariants based on moments.
However, generally, the higher degree of symmetry of the PSF is assumed, the
more invariants can be obtained [1].

The proposed copy—move forgery detection method is based on a few main
steps: tiling the image with overlapping blocks, blur moment invariants repre-
sentation of the overlapping blocks, principal component transformation, k—d
tree representation, blocks similarity analysis and near-duplicated regions map
creation. Each step is explained separately in the following sections.

2.1 Overlapping Blocks

This method begins with the image being tiled by blocks of R×R pixels. Blocks
are assumed to be smaller than the size of the duplicated regions, which have to
be detected. Blocks are horizontally slid by one pixel rightwards starting with
the upper left corner and ending with the bottom right corner. The total number
of overlapping blocks for an image of M ×N pixels is (M −R+1)× (N−R+1).
For instance, an image with the size of 640 × 480 with blocks of size 20 × 20
yields 286281 overlapping blocks.

2.2 Blur Invariants Representation

Each block is represented by blur invariants, which are functions of central mo-
ments. The two-dimensional (p + q)th order moment mpq of image function
f(x, y) is defined by the integral:

mpq =
∫ ∞

−∞

∫ ∞

−∞
xpyqf(x, y)dxdy

The two-dimensional (p+ q)th order central moment µpq of f(x, y) is defined as

µpq =
∫ ∞

−∞

∫ ∞

−∞
(x− xt)p(y − yt)qf(x, y)dxdy

where the coordinates (xt, yt) given by the relations xt = m10/m00, yt =
m01/m00 denote the centroid or the center of gravity of f(x, y). By suppos-
ing that g(x, y) = (f ∗ h)(x, y), we can simply derive that central moments of
g(x, y) are defined as µpq =

∑p
k=0
∑q

j=0

(
p
k

)(
q
j

)
µ

(f)
kj µ

(h)
p−k,q−j .

We are looking for features invariant to blur. Feature B is called blur invariant
if Bf = Bfh = Bg.



Detection of Near-Duplicated Image Regions 191

As mentioned, we consider only symmetric h(x, y). By applying the algorithm
as derived and described in [1, 3], we can construct blur invariants based on
central moments of any order by using the following recursive relation:

B(p, q) =µpq − α · µpq − 1
µ00

K∑
n=0

m2∑
i=m1

(
p

t− 2i

)(
q

2i

)
·B(p− t + 2i, q − 2i)µt−2i,2i

where

K = [(p + q − 4)/2], t = 2(K − n + 1),m1 = max(0, [(t− p + 1)/2]),
m2 = min(t/2, [q/2]), α = 1 ⇔ p ∧ q are even, α = 0 ⇔ p ∨ qare odd.

The proposed algorithm uses 24 blur invariants up to the seventh order to
create the feature vector B = {B1, B2, B3, . . . , B23, B24} of each block. Some
examples of utilized invariants in their explicit forms are listed below:

B1 = µ11, B2 = µ12, B3 = µ21, B4 = µ03, B5 = µ30,

B6 = µ13 − 3µ02µ11

µ00
, B7 = µ31 − 3µ20µ11

µ00
,

B8 = µ32 − 3µ12µ20 + µ30µ02

µ00
, B9 = µ23 − 3µ21µ02 + µ03µ20

µ00
.

Because we will use an Euclidean metric space, the invariants should be nor-
malized to have the same weight. To achieve this, the normalization described
in [2, 3] is used B

′
i = Bi

(R/2)ru00
, where R is the block size and r the order of

Bi. Please note that in this manner normalized invariants are also invariant
to contrast changes, which improves the duplication detection abilities of the
algorithm.

As is obvious, each block is represented by a feature vector of length 24 in
the case of gray-scale images. For RGB images, moment invariants of each block
in each channel are computed separately, resulting in feature vector Brgb =
{Bred, Bgreen, Bblue} of length 72.

2.3 Principal Component Transformation

In the case of an RGB image, the dimension of the feature vector is 72 (24
invariants per channel). Using the principal component transformation we reduce
this dimension. Fraction of the ignored variance along the principal axes is set
to 0.01. In PCT, the orthogonal basis set is given by the eigenvectors set of the
covariance matrix of the original vectors. Thus, it can be easily computed on
very large data sets. Note that PCT preserves the Euclidean distance among
blocks.

2.4 k—d Tree Representation

In blocks similarity analysis (see next section) we will need to efficiently identify
all blocks which are in a desired similarity relation with each analyzed block.



192 B. Mahdian and S. Saic

A simple exhaustive search computes the distance from the block to all others.
This approach is very inefficient and its computational cost is O(N). To improve
the efficiency of finding neighboring blocks, some hierarchical structures have
been proposed. The k—d tree is a commonly used structure for searching for
nearest neighbors.

The k–d tree preprocesses data into a data structure allowing us to make
efficient range queries. It is a binary tree that stores points of a k–dimensional
space in the leaves. In each internal point, the tree divides the k–dimensional
space into two parts with a (k−1)-dimensional hyperplane. If a k—d tree consists
of N records, it requires O(Nlog2N) operations to be constructed and O(log2N)
to be searched. Because of these reasons, the proposed method transforms blocks
representation to a k–d tree for a more effective closest neighbors search.

2.5 Blocks Similarity Analysis

The main idea of this step is that a duplicated region consists of many neigh-
boring duplicated blocks. If we find two similar blocks in the analyzed space and
if their neighborhoods are also similar to each other, there is a high probability
that they are duplicated and they must be labeled.

The similarity measure s employed here is defined by the formula:
s(Bi, Bj) = 1/(1 + ρ(Bi, Bj)), where ρ is a distance measure in the Euclidean
space ρ(Bi, Bj) = (

∑dim
k=1(Bi[k] − Bj [k])2)1/2. For each analyzed block repre-

sented by the feature vector B, we look for all blocks with an equal or larger
similarity relation. It must be an equal or larger similarity to the threshold T .
The method finds all similar blocks for each one (similar to the nearest neighbors
search) and analysis their neighborhood. This is done efficiently using the k—d
tree structure, which was created in the previous step.

If s(Bi, Bj) > T , where T is the minimum required similarity, we also analyze
the neighborhood of Bi and Bj . Note that the threshold T plays a very important
role. It expresses the degree of reliability with which blocks i and j correspond
with each other. It is obvious that the choice of T directly affects the precision
of results of the method. Due to the possibility of the presence of additive noise,
a boundary effect, or JPEG compression, this threshold should not be set to 1.

After two blocks with the required similarity have been found, a verification
step begins. In the verification step, similar blocks with different neighbors will
be eliminated.

For analyzing the blocks neighborhood, we choose 16 neighboring blocks with
a maximum distance of 4 pixels from the analyzed block (distance from their
upper left corners). If 95% of these neighboring blocks satisfy the similarity con-
dition, the analyzed block is labeled as duplicated. More formally, block 1 with
coordinates (i, j) and block 2 with coordinates (k, l) are labeled as duplicated if
s(block(i + xr , j + yr), block(k + xr, l + yr)) ≥ T , where xr ∈ 〈−4,−3, . . .3, 4〉
and yr ∈ 〈−4,−3, . . .3, 4〉 and r = 1 . . . 16. This part of the algorithm also de-
termines the minimum size of the copied area, which can be detected by the
algorithm.



Detection of Near-Duplicated Image Regions 193

To have more precise results, the verification step additionally uses informa-
tion about the image distances of analyzed blocks.

If s(block(i, j), block(k, l) ≥ T ), but
√

(i− k)2 + (j − l)2 ≤ D, these blocks
will not be further analyzed and will not be assigned as duplicated. Threshold D
is a user-defined parameter determining the minimum image distance between
duplicated regions.

The output of this section is matrix Q with the same size as the input image.
Elements of this matrix are either zero or one. An element of this matrix is set
to one if the block at this position is duplicated.

2.6 Near-Duplicated Regions Map Creation

The output of the method is a near-duplicated regions map showing the image
regions,which are likely duplicated. It is created by the multiplication of each
element of I(x, y) by its respective element in Q(x, y). Matrix Q(x, y) is created
in the previous section.

3 Experimental Results

An experimental version of the proposed method was implemented in Matlab.
The output of the method is a duplication map, in which likely duplicated regions
are shown. Parameters of the method were set to R = 24 (block size), T = 0.98
(similarity threshold), D = 24 (blocks image distance threshold). These parame-
ters can be changed (for instance, R = 20, T = 0.97), but it has a strong influence
on obtained results. In the PCT step, the fraction of the ignored variance along
the principal axes, ε, was set to 0.01. Please note that the computational time
of the method is highly dependent on these parameters (specially on T and ε).
In the presented example, the tampering was realized by copying and pasting a
region in the image with intent to conceal a person or object. Additionally, in
order to make the detection of forgery more difficult and interesting, the second
example contains further manipulations of the pasted region.

Fig. 2. Two duplication maps constructed by the proposed method



194 B. Mahdian and S. Saic

The first example is presented in the top image of Figure 2. It shows the
output of the method applied to the tampered image shown in Figure 1(b).
In this example, no further manipulations were carried out with the tampered
regions. The tampered image was saved in TIFF format. The output shows that
the proposed method correctly detected the near-duplicated regions.

The bottom image of Figure 2 shows the duplication map created by applying
our method to Figure 1(b). In this example, the tampered region was blurred
with a Gaussian blur filter with radius 0.3 pixels. The tampered image in this
case was saved in JPEG format quality 80.

4 Discussion

Our results show that the use of blur moment invariants can improve the de-
tection abilities of the copy—move forgery detection methods. By using blur
moment invariants we are able to additionally detect duplicated regions with
presence of acceptable blur and additive Gaussian noise. By normalizing mo-
ment invariants they also become invariant against contrast changes. The pro-
posed method also works with lossy JPEG format images.

It can be interesting to mention briefly the stability of moment invariants un-
der additive random noise. As aforementioned, moment invariants are computed
by a summation over the whole image, so they are not significantly affected by
additive zero-mean noise. For a more detailed discussion about this topic see [3].

Our method is based on truncated versions of the filtered blocks which are
additionally corrupted by the neighboring pixels. Therefore we have to mention
the stability of moment invariants with respect to boundary effect. If our blocks
have R×R pixels and the size of PSF support is H ×H pixels, the correct size
of the resulting block must be (R+H − 1)× (R−H − 1). In our case, the value
of H is unknown. If H � R the errors of invariant calculation caused by the
boundary effect is negligible. If H is relatively large as in the case of heavy blur,
the boundary effect will cause significant miscalculations of the invariant values.
For an experiment on this topic, see [3].

A disadvantage of the proposed method is its computational time. The average
run time of the implemented experimental version with parameters R = 24
(block size) and T = 0.98 (similarity threshold) for 640 × 480 RGB images on
a 2.1 GHz processor and 512 MB RAM is 30 min. The computational time is
not the same for images with the same size. It is dependent on each images
characteristics (the dimension of space created after the PCT) and especially on
the similarity threshold parameter of the algorithm. It is also important to note
that the implemented experimental version was not optimized and there exist
possibilities to improve the computational time.

A way to considerably improve the computational time is to eliminate large
uniform areas in a preprocessing step and apply the proposed method to the
rest of the analyzed image. Then the output of the method could consist of a
duplication map and a uniform areas map.



Detection of Near-Duplicated Image Regions 195

References

1. J. Flusser and T. Suk. Degraded image analysis: An invariant approach. IEEE Trans-
actions on Pattern Analysis and Machine Intelligence, 20(6):590–603, 1998

2. J. Flusser, T. Suk, and S. Saic. Image features invariant with respect to blur. Pattern
Recognition, 28(11):1723–1732, 1995

3. J. Flusser, T. Suk, and S. Saic. Recognition of blurred images by the method of
moments. IEEE Transactions on Image Processing, 5(3):533–538, 1996

4. J. Fridrich, D. Soukal, and J. Lukas. Detection of copy-move forgery in digital im-
ages. In Proceedings of Digital Forensic Research Workshop, Cleveland, OH, USA,
August 2003, IEEE Computer Society

5. A. Popescu and H. Farid. Exposing digital forgeries by detecting duplicated image
regions. Technical Report TR2004-515, Department of Computer Science, Dart-
mouth College, 2004


